
Theorem

- The Logic of ANOVA
 - ANOVA is a test that compares individual samples to each other <u>AND</u>
 observes the variation within each individual sample.
 - When comparing individual samples to each other, we call that
 ______(____)
 - When observing the variation within each individual sample, we call that

- Everything ANOVA (Table and Testing by Hand)
 - The ______ is the interest that is measured in an experiment.
 - This is also known as the ______.
 - o The ______ is what is effected by the ______.
 - This is also known as the _____.
 - o ______ in an experiment are the levels in the _____.

Factor			
(Variable)			
Residual			
(Error)			

o Considerations

■ There a	are treatments which act as our	
•	These treatments are under cate	gory
■ The ov	verall sample size () for are dist	ributed for each
■ Each_	also has a	&
•	To find the	:
■ The hv	/potheses	
•	Null:	
•	Alternative:	
 Formulas 		
■ The Su	um of Squares	
•	Between ()	
•	Within ()	
-	VVICIIII ()	
	egrees of freedom	
•	Between ()	
•	Within ()	
■ The Me	ean Squares	
•	Between ()	
•		
•	Within ()	

	•	Test Statistic	
		P-value	
	•	Total Sum or Squares (May or may not be asked	d to find this)
	•	Total Degrees of Freedom (May or may not be a	sked to find this)
0		ion & Interpretation Rejecting ()	
		_% level of significance, there istleast one of the treatment means differ.	evidence to support
	•	Failing to Reject ()	
		_% level of significance, there istleast one of the treatment means differ.	evidence to support
\NOV ○		st on the Calculator ill need the data/list for each treatment Input into the calculator	
0	Then	ou go to the ANOVA function	
	•	Output Terms to know • F is the • P is the	
		 Factor stats (df, SS, and MS) is the 	values
		Error stats (df, SS, and MS) is the	

<u>Ignore</u> Sxp!!! Post-Hoc Analysis o Only used when you _____ in the ANOVA test! o This analysis looks at determining which treatment is different from the others, if possible for the particular scenario. This class focuses on the _____ method and the _____ method. We use ______ for _____ sample sizes between treatments. We use _____ for ____ sample sizes between treatments. o Both methods are comparisons. I.e. If there are 3 treatments Post-Hoc looks at: This means the hypotheses look like: Null: Alternative: o For Post-Hoc, you will be given an R table with each treatment comparison written out. You will <u>not</u> be expected to calculate for each comparison! Decision & Interpretation (Overall) Rejecting (_____) Means that _____ Failing to Reject (_____) Means that Thus, we say: At ____% level of significance, we could say that treatment(s) _____ are different from treatment(s) _____. **Practice** 1. Ella, a beauty CEO, is performing an experiment comparing the time it takes (in

minutes) for different face mask formulas to dry to determine which face mask is best for quick use. Use the table below to answer the questions, keeping in mind

that we are testing against a 5% significance level.

Formula A	Formula B	Formula C
2.35	3.58	1.25
1.55	3.05	1.90
2.05	2.98	2
3	4	3.05
2.88	2.89	1.5
1.90	3.43	2.80
3.05		1.45
2.75		

a. Identify the Factor, Levels, and response variables.

- b. State the ANOVA Hypotheses.
- c. Fill in the ANOVA table.

	SS	Df	MS	TS	p-value
Factor					
(Variable)					
Residual					
(Error)					

- d. What is the decision?
- e. Choose the appropriate interpretation.
- ☐ At 5% level of significance, there is sufficient evidence to support that at least one of the treatment means differ.
- ☐ At 5% level of significance, there is insufficient evidence to support that at least one of the treatment means differ.

- f. Would we move onto Post-Hoc? If yes, continue.
- g. Write the Post-Hoc Hypotheses.
- h. Analyze the R output below.

- i. Interpret the scenario.
- 2. Steven, a pharmacist, is trying to determine which ADHD medication is most effective out of the 4 most common types. To do so, the pharmacist asks 7 people for each medication how effective they would rate it. Use the statistics below to answer the questions, keeping in mind that we are testing against a 1% significance level.

Medication	Mean Score	Standard Deviation	Sample Size
#1	5.43	1.72	7
#2	4.14	1.35	7
#3	6.29	1.11	7
#4	6	1.41	7

- a. Identify the Factor, Levels, and response variables.
- b. State the ANOVA Hypotheses.
- c. Fill in the ANOVA table.

	SS	Df	MS	TS	p-value
Factor					
(Variable)					

Residual		
(Error)		

- d. What is the decision?
- e. Choose the appropriate interpretation.
- ☐ At 1% level of significance, there is sufficient evidence to support that at least one of the treatment means differ.
- ☐ At 1% level of significance, there is insufficient evidence to support that at least one of the treatment means differ.
 - f. Would we move onto Post-Hoc? If yes, continue.
 - g. Write the Post-Hoc Hypotheses.
 - h. Analyze the R output below.

```
diff lwr upr p adj

2-1 0.36250000 0.12528287 0.59971713 0.0010358

3-1 0.07833333 -0.15888380 0.31555047 0.8143113

4-1 0.22000000 -0.01721713 0.45721713 0.0778376

3-2 -0.28416667 -0.52138380 -0.04694953 0.0131752

4-2 -0.14250000 -0.37971713 0.09471713 0.3869986

4-3 0.14166667 -0.09555047 0.37888380 0.3921830
```

i. Interpret the scenario.