Goodness of Fit Theory

•	Concepts for Chi Square Tests		
	o	The properties of a Chi-Square distribution:	
		It is and therefore,	
		The degrees of freedom vary depending on type of test:	
		One-way Goodness of fit:	
		• Two-way:	
		o For Independence and Homogeneity	
		The mean of this distribution also equals the degrees of	
		freedom	
	o	The counts () are the number of observations that fall into	
		each category while the counts () are the number of	
		observations we think will fall into each category.	
	O	Sample size is large when	
•	Goodi	ness of Fit Testing:	
	O	When we have known/old data that we are testing against with	
	O	You should be given:	
		 – number of categories	
		A for each category	
		 A large sample size 	
		 Level of significance 	
		 The observed counts from the experiment 	
	o	The hypotheses statements:	
		Null	
		Alternative	

o Formulas

	•	Degrees of freedom
	•	Test Statistic
		P-value
o	Makin	g a Decision
	-	Rejecting ()
	•	Failing to reject ()
o	Interp	retation Rejecting
		Failing to Reject
0	Calcu	lator Trick (X ² GOF-Test)
Ü	•	How to get to the function
		What you need
		•
		•
		•
	•	What you will get (that is relevant)

Expected counts

•