Goodness of Fit Theory

•	Concepts for	Chi Square	Tests
---	--------------	------------	-------

0	The pro	perties (of a	Chi-So	luare	distrib	ution
\sim	1110 010	201 1100 1	0 1	O111 O4	luui o	aloti b	acioii

- It is ___right-skewed ___ and therefore, ___non-negative
- The degrees of freedom vary depending on type of test:
 - One-way Goodness of fit: #categories 1
 - Two-way: ___(#rows 1)(#columns 1)
 - o For Independence and Homogeneity
 - The mean of this distribution also equals the degrees of freedom
- o The <u>observed</u> counts (<u>o</u>) are the number of observations that fall into each category while the <u>expected</u> counts (<u>E</u>) are the number of observations we think will fall into each category.
- o Sample size is large when <u>each expected count ≥ 5</u>
- Goodness of Fit Testing:
 - When we have known/old data that we are testing against with
 1 data set for a single variable
 - o You should be given:
 - h number of categories
 - A <u>proportion/percentage</u> for each category
 - A large sample size (n)
 - Level of significance (人)
 - The observed counts from the experiment
 - o The hypotheses statements:
 - Null

The proportion distributions are correct.

Alternative

At least 1 of the proportion distributions are incorrect.

o Formulas

Expected counts

$$\varepsilon_i = n \cdot p_i$$

Degrees of freedom

Test Statistic

TS =
$$\frac{\left(O_{i} - E_{i}\right)^{2}}{E_{i}}$$

P-value

- o Making a Decision
 - Rejecting (<>>p)
 - Failing to reject (<
- o Interpretation
 - Rejecting

At level of significance, there is sufficient evidence to say that at least 1 of the proportion distributions are incorrect.

Failing to Reject

At (a) level of significance, there is insufficient evidence to say that at least 1 of the proportion distributions are incorrect.

- o Calculator Trick (X ² GOF-Test)
 - How to get to the function

- What you need
 - Expected counts in a list ____ make sure counts

 are in the same order

 for both lists!

 - Degrees of freedom
- What you will get (that is relevant)

- Test Statistic (\(\chi^2 \))
 P-value (\(\bar{\rho} \))
- Degrees of freedom (again)