2-Way Hypothesis Testing Theory

•	Conce	epts for Chi Square Tests Refresher
	o	The properties of a Chi-Square distribution:
		It is and therefore,
		The degrees of freedom vary depending on type of test:
		One-way Goodness of fit:
		• Two-way:
		o For Independence and Homogeneity
		The mean of this distribution also equals the degrees of
		freedom
	o	The counts () are the number of observations that fall into
		each category while the counts () are the number of
		observations we think will fall into each category.
	o	Sample size is large when
•	Test o	f Independence Specific:
	O	When we have that we need to see if there is
		any association
	o	The hypothesis Statements:
		Null:
		• Alternative:
	O	Interpretation
		Rejecting
		At level of significance, we have sufficient evidence to say that there is a
		relationship between
		Failing to Reject
		At level of significance, we have insufficient evidence to say that there is
		a relationship between

• Test of Homogeneity Specific:

	0	When we have	that we need to see if the
		distributions are equal	
	0	The hypothesis Statements:	
		Null:	
		• Alternative:	
	0	Interpretation	
		Rejecting	
		·	have sufficient evidence to say that the
		distribution of variables is not ho	mogeneous.
		Failing to Reject	
		At level of significance, we	have insufficient evidence to say that the
		distribution of variables is not ho	9
•	What	applies to both Independence an	d Homogeneity
	0	You should be given:	
		A sample size (n) from a _	
		■ Two	
			s that represents the rows
		_	s that represents the columns
		_	
		 A level of significance ()
	0	Formulas • Expected counts	
		Expected counts	
		Degrees of Freedom	
		Dogrood or ricedoni	

Test Statistic

P-value
 o Making a Decision Rejecting () Failing to reject () Calculator Trick o Part 1: The Matrix
How you get to the function
What you need to know
•
•
o Part 2: X2-Test
 How you get to the function
What you need to know
What you get from the function
•
•
•
•