Theory Recap

- A numerical measure of a population is known as ______population parameter ______
 - o This uses ALL the values of a population
- A numerical descriptive measure of a sample is known as ____sample statistic _____
 - o Found in calculations using observations from experiments
- The probability distribution of the statistics constructed from many samples of the same size is known as the <u>sampling distribution</u>

	Population Parameter	Sample Statistic
Mean	M	\overline{X}
Median	η	M or Q2
Variance	♂ ³	5ª
Standard Deviation	6	S
Binomial Proportion	p	Ŷ

- A number that is calculated from a sample to estimate the target parameter is known as the Point Estimate
- The interval of numbers calculated from a sample that contains the target parameter is known as the <u>Confidence Interval</u>
- The probability that the estimation method will generate a

Confidence Interval is known as the Confidence Level

- o The most common values used are: 99%, 95%, 90%
- The complement of the <u>Confidence Level</u> is known as the

Type I Error ()

- o The most common values used are: $|^{0/6}$, $|^{0/6}$
- o If you are not given one in the question, we assume that it is
- The overall formula for finding Confidence Interval is...

(Point Estimate - Margin of Error, Point Estimate + Margin of Error)

Population Mean Theory

- The way we solve for the confidence interval depends on the sample size.
 - o Considered <u>large</u> if the total (n) is $n \ge 30$ and <u>small</u> if the total (n) is $n \le 30$.
- Formulas to understand:
 - o Point Estimate (For large and small sizes)

$$PE = \overline{X} = \frac{\sum X}{N}$$

- o Margin of Error
 - For large samples

For small samples

- o Critical Value
 - For large samples (Zda)

■ For small samples (to 4/2)

$$\left\{ \frac{1}{da} = \left| inv T \left(\frac{\alpha}{2}, df \right) \right| \right\}$$

- T-distribution
 - o Very similar to normal distribution except it works with a

family or multiple of distributions instead of a single distribution.

o Uses <u>degrees of freedom</u>

Interpretation

We are % confidence that the true unknown population mean lies in the interval (solved confidence interval).

 Calculator Tricks for Population Mean C.I. o For large samples Interval
Stat> Tests> 7: ZInterval
o For small samples Tinterval
Stat> Tests> TInterval
 Regardless of which trick you have to use, there are two paths in using the function: Data Use <u>lists</u> after the data is entered into the calculator
Also need the
Stats
 Need:mean (M),standard deviation (T), andsample size (N) Also need theconfidence level