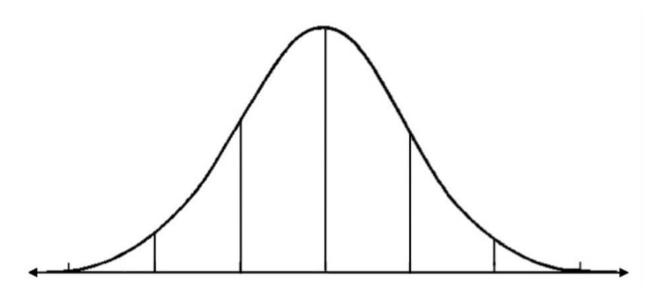
Discrete v. Continuous Random Variables


•	Previously, we saw that Random Variables
	o Considers X as a number of outcomes
	The probability was a set rate or proportion (
•	Moving on with Random Variables
	o Considers X as an number of outcomes because it looks
	at the overall
	o The probability is the
	With the total
	 Anytime an exact point is mentioned, the answer is automatically
	<u>Uniform Distribution</u>
•	Unlike what we see after this, uniform distribution has a shaped
	curve.
•	When we solve these questions, we use specific formulas:
	0
	0
1.	Using the table below, answer the following questions.
	0 1 2 3 4 5 6 7 8 9 10
	a What is the probability (i.e. area) of the shaded region?

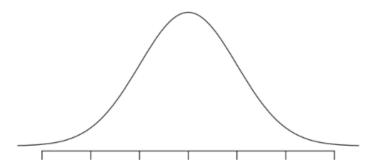
b. What would the probability of more than 2 but less than 7?

- c. What is the probability of exactly 5?
- d. What would be the probability of less than 4 or at least 8?

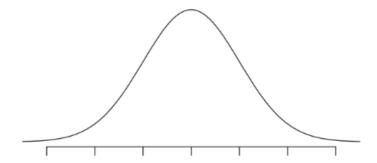
Empirical Rule

- Under empirical rule, the area under the curve is still ____
- The only thing to remember for empirical rule is what the graph below tells us!

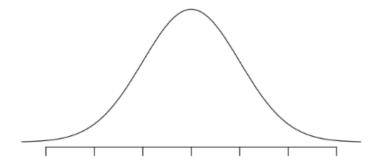
• In short, the graph above tells us...


0

0


0

Using Empirical Rule, answer the following questions.


1. Sketch a graph in which the area (centered) is 68% while the mean is 86 and the standard deviation is 21. Write the Probability (P) statement for the shaded area.

2. Sketch a graph in which the area (from the left) is 16% while the mean is 14 and the standard deviation is 3. Write the Probability (P) statement for the shaded area.

3. Sketch a graph in which the area (from the right) is 97.5% while the mean is 190 and the standard deviation is 33. Write the Probability (P) statement for the shaded area.

